Radioactive Contamination

Monitoring Methods

Hand-held monitor

- Usually a Mini-Instruments mini-monitor
- Geiger-Muller and solid scintillation detectors

Wipe test

Liquid scintillation counting

Standard Mini-Monitor

Type E/S Probes

Primarily used to detect β radiation Geiger-Muller (GM) detectors

Type E/S Probes

E	6cm ² end-window. Background = ~0.25cps. Used for hard β, e.g. ³² P, ³⁶ Cl. Will detect soft β, e.g. ¹⁴ C, ³⁵ S, ³³ P, ⁴⁵ Ca, but EP15 is preferred. Will not detect very weak β, e.g. ³ H. Sensitive to γ, X and α.		
EP15	Twice as sensitive as type E. 15cm ² end-window. Background = ~0.5cps Used for hard β , e.g. ³² P, ³⁶ Cl. Especially good for soft β , e.g. ¹⁴ C, ³⁵ S, ³³ P, ⁴⁵ Ca, except ³ H. Also sensitive to γ and X. OK for α > 3Mev.		
S/SL	Open grille on one side. Background = ~1cps. Used for hard β , e.g. ³² P, ³⁶ Cl. Not suitable for soft β , e.g ³ H, ¹⁴ C, ³⁵ S, ³³ P, ⁴⁵ Ca. Suitable for β/γ emitters such as ²² Na.		

	Isotope	$\beta \; E_{max}$	
Soft β	3H	0.019	Not detectable by mini-monitor
	14C	0.156	
	35S	0.167	ED1E
	33P	0.249	CPID
	45Ca	0.257	
Hard β	36Cl	0.710	
	32P	1.711	

Type 42/44 Probes

Used to detect γ and x-ray radiation
All NaI solid scintillation detectors

Type 42/44 Probes

42A	0.05mm thick aluminium end window. 23mm diam, 1mm thick crystal. Background = 1.5 to 3 cps. Used for low intensity γ/x , 10 to 150 KeV.		
42B	0.25mm thick beryllium end window. Much better detection efficiency at energies < 10 KeV. Used for low intensity γ/x , 5 to 150 KeV.		
44A	0.05mm thick aluminium end window. 32mm diam, 2.5mm thick crystal. Background higher than Type 42 but much better efficiency above 40KeV. Used for wider range of γ/x , 10 to 500+ KeV.		
44B	0.25mm thick beryllium end window. Much better detection efficiency at energies < 10 KeV. Used for wider range of γ/x , 5 to 500+ KeV.		

Detector Efficiency

- Set is the set of t
- Determined by
 - Geometry
 - Absorption in air and end window
 - Intrinsic efficiency of the detector

Braking radiation

Using a Mini-Monitor

- Check
 - Next test date
 - Probe type
 - Battery strength
- Remove end-window cap
- Check
 - Speaker is on
 - Background reading
 - Response to check source

Monitoring Protocol

- Note date and type of monitor/probe used
- Note background cps
- Monitor slowly and methodically
- Hold the probe ~1cm above the surface
 - Take care not to contaminate the end of the probe!
- Record
 - cps if > background
 - zero if cps = background

Dealing with Contamination

- Establish the extent & demarcate area
- Attempt to decontaminate
- Continue until all loose contamination has been removed
- Re-monitor area
- If bound contamination remains and presents a significant external radiation hazard, shield it

Wipe Testing

- More laborious than mini-monitoring
- Essential for tritium
- Employs liquid scintillation counting
- Low efficiency
 - Usually only 10% of loose contamination in picked up
 - Subject to quenching
- Qualitative rather quantitative

Possible Protocol

- Label counting vials (on cap not side)
- Use EtOH soaked filter disc, held in forceps
- Swab 10 x 10cm area (if possible)
- Work from the perimeter inwards
- Transfer disc to counting vial
- Take background wipe from an area never used for radioactive work, e.g. office bench
- Add 10ml of scintillation cocktail to each vial
- Shake well
- Count for 5 min on scintillation counter
 - Parameters will depend upon type of counter
- Any result 2x background is positive
 - Decontaminate and re-test until no loose contamination is detected

Alternative Methods

- Use a cotton-bud for very small areas
 - Break off into a microfuge tube
 - Add 150µl of scint fluid
- Use 2.5 diameter filter disc
 - Insert vertically into minivial
 - Add 0.5ml of scint fluid
 - Tilt carefully to completely wet filter
 - Insert into counter so disc faces detector

Liquid Scintillation Counting

Quenching

- Photon β is absorbed
- Chemical blocks slovent/fluor transfer
- Optical
 - Inside vial colour quenching
 - Residue on outside of vial
- Other phenomena that interfere with LSC
 - Chemiluminescence
 - Static electricity