University of Dundee

Neuroscience/Neurology

CSC - Phosphorylation of Rab GTPases in Health & Disease

Phosphorylation is a major posttranslational modification whose disruption is linked to multiple human diseases. Our lab has recently found a link between the Parkinson’s associated protein kinase PINK1 and a subset of Rab GTPases. This project will employ state-of-the-art methods to uncover the regulation of Rabs by PINK1 in cells .

The project will lead to training in a wide array of technologies including mass spectrometry and biochemistry. The lab is also linked to the EMBO network and the student will also benefit from training opportunities in Europe during their studies.

CSC- Non-lysine ubiquitination in health and disease

Ubiquitination is a posttranslational modification that regulates all aspects of physiology and aberrant ubiquitination has been implicated with numerous diseases. Ubiquitination is typically considered a posttranslational modification of lysine residues but it is emerging that non-lysine ubiquitination is intrinsic to mammalian biology. This project will use a multidisciplinary approach to understand the cellular function of non-lysine ubiquitination.

CSC - Finding the eat-me signals

The Ganley lab is interested in unravelling the molecular mechanism of autophagy (which literally translates from the Greek meaning to eat oneself). Autophagy is a lysosomal degradation pathway that functions to clear the cell of potentially damaging agents, such as protein aggregates or faulty mitochondria, as well as acting as a recycling station to supply essential building blocks during periods of starvation.

CSC - Investigating the impact of mRNA cap regulation

We investigate the regulation and function of the mRNA cap, a modification of RNA essential for gene expression which integrates transcript processing and translation.  We are beginning to understand how oncogenes and signalling pathways can regulate gene expression via regulation of mRNA capping enzymes. Signalling pathways which modify the mRNA capping enzymes have the potential to change the gene expression landscape, thus causing changes in cell physiology. 

CSC - Molecular mechanisms underlying Parkinson's disease

There is great need for improved understanding of the mechanistic biology underlying Parkinson’s disease. Such knowledge will help with development of new drugs that slow or even halt the progression of the disease. The discovery that hyper-activating mutations in a protein kinase termed LRRK2 causes Parkinson’s, offers the prospect of elaborating new, potentially disease-modifying treatments [1].

Pages