University of Dundee

Microbiology

CSC - Investigating immune signaling networks induced by fungal infection

Species from several fungal genera, including Candida, Aspergillus, Pneumocystis and Cryptococuss have the potential to give rise to serious clinical infections and are estimated to cause 1.5 million deaths per year.  Despite their importance as human pathogens, our understanding of how they affect immune cells, and how this might be affected by the presence of other pathogens is incomplete.

CSC - Phosphorylation of Rab GTPases in Health & Disease

Phosphorylation is a major posttranslational modification whose disruption is linked to multiple human diseases. Our lab has recently found a link between the Parkinson’s associated protein kinase PINK1 and a subset of Rab GTPases. This project will employ state-of-the-art methods to uncover the regulation of Rabs by PINK1 in cells .

The project will lead to training in a wide array of technologies including mass spectrometry and biochemistry. The lab is also linked to the EMBO network and the student will also benefit from training opportunities in Europe during their studies.

CSC - The molecular cell biology of Plant-Phytophthora interactions

Phytophthora species are amongst the most devastating causes of disease on dicot plants. Chief amongst them is P. infestans, cause of late blight, the number one disease globally on potato and tomato. P. infestans is able to secrete proteins called effectors which are delivered inside living plant cells to manipulate various processes, including host immunity. Our group study the secretion, post-translational processing and delivery of so-called RXLR effectors. RXLR effectors may target host proteins to alter, promote or prevent their functions.

CSC- Non-lysine ubiquitination in health and disease

Ubiquitination is a posttranslational modification that regulates all aspects of physiology and aberrant ubiquitination has been implicated with numerous diseases. Ubiquitination is typically considered a posttranslational modification of lysine residues but it is emerging that non-lysine ubiquitination is intrinsic to mammalian biology. This project will use a multidisciplinary approach to understand the cellular function of non-lysine ubiquitination.

CSC - Decoding gene expression mechanisms in trypanosomes

The African trypanosome, Trypanosoma brucei, is transmitted among mammalian hosts by tsetse flies. These unicellular parasites cause sleeping sickness, also known as Human African Trypanosomiasis, which is typically fatal if left untreated, and the livestock disease known as nagana. Molecular mechanisms underlying antigenic variation and gene expression control remain to be fully characterized.

Pages