Professor Tomo Tanaka FRSE
Research
Teaching
A) Lectures and tutorials for undergraduate students about chromosome segregation in mitosis - Level 3 (BS31006 Gene Regulation and Expression)
B) Supervisor of Honours degree students - Lab-based projects and literature/data analysis projects
C) Supervisor of PhD students
Publications
Major publications from the group
Doodhi H., Kasciukovic T., Clayton L. & Tanaka T.U. Aurora B switches relative strength of kinetochore–microtubule attachment modes for error correction. J. Cell Biol. 220, e202011117 (2021). view paper
Booth AJR., Yue, Z, Eykelenboom JK, Luxton GWG, Hochegger H & Tanaka TU. Contractile actomyosin network on nuclear envelope remants positions chromososomes for mitosis. eLife 8, e46902 (2019). view paper
Garcia-Rodriguez, L. J., Kasciukovic, T., Denninger, V., and Tanaka, T. U. (2019) Aurora B-INCENP Localization at Centromeres/Inner Kinetochores Is Required for Chromosome Bi-orientation in Budding Yeast. Curr Biol 29, 1536-1544 e1534 View Paper
Eykelenboom, J. K., Gierlinski, M., Yue, Z., Hegarat, N., Pollard, H., Fukagawa, T., Hochegger, H., and Tanaka, T. U. (2019) Live imaging of marked chromosome regions reveals their dynamic resolution and compaction in mitosis. J Cell Biol 218, 1531-1552 View Paper
Li S, Yue Z & Tanaka TU. Smc3 deacetylation by Hos1 facilitates efficient dissolution of sister chromatid cohesion during early anaphase. Mol Cell. 68, 605-14 (2017) view paper
Yue, Z., Komoto, S. Gierlinski, M., Pasquali, D., Kitamura, E and Tanaka, T.U. (2017) Mechanisms mitigating problems associated with multiple kinetochores on one microtubule in early mitosis. J. Cell. Sci. 130, 2266-2276. PMID:28546446; DOI 10.1242/jcs.203000. view paper
Vasileva, V., Gierlinkski, M., Yue, Z., O'Reilly, N., Kitamura, E. and Tanaka, T.U. (2017) Molecular mechanisms facilitating the initital kinetochore encounter with spindle microtubules. J. Cell Biol., 216, 1609-22. doi: 10.1083/jcb.201608122; PMID:28446512. view paper
Kalantzaki, M., Kitamura, E., Zhang, T., Mino, A., Novák, B. and Tanaka, T. U. (2015) Kinetochore-microtubule error correction is driven by differentially regulated interaction modes. Nature Cell Biology, 17, 421-433.
doi; 10.1038/ncb.3128.; PMID: 25751138 View Paper
Kobayashi, N., Suzuki, Y., Schoenfeld, L. W., Müller, C. A., Nieduszynski, C., Wolfe, K. H. and Tanaka, T. U. (2015) Discovery of an unconventional centromere in budding yeast redefines evolution of point centromeres. Curr Biol 25; 2026-33. doi; 10.1016/j.cub.2015.06.023; PMID: 26166782 View Paper
Tanaka, T.U., Clayton, L., Natsume, T. (2013) Three wise centromere functions: see no error, hear no break, speak no delay. EMBO Rep, 14, 1073-83. doi; 10.1038/embor.2013.181. PMID: 24232185 View Paper
Natsume, T., Müller, C. A., Katou, Y., Retkute, R., Gierlinski, M., Araki, H., Blow, J. J., Shirahige, K., Nieduszynski, C. A. and Tanaka, T. U. (2013) Kinetochores coordinate pericentromeric cohesion and early DNA replication by Cdc7-Dbf4 kinase recruitment. Mol Cell, 50, 661-74. (2013). doi; 10.1016/j.molcel.2013.05.011; PMID: 23746350 View Paper
Saner, N., Karschau, J., Natsume, T., Gierlinski, M., Retkute, R., Hawkins, M., Nieduszynski, C. A., Blow, J. J, de Moura, A. P. S. and Tanaka, T. U. (2013) Stochastic association of neighboring replicons creates replication factories in budding yeast. J Cell Biol, 202, 1001-12. doi; 10.1083/jcb.201306143; PMCID: PMC3787376 View Paper
Gandhi, S. R, Gierlinski, M., Mino, A., Tanaka, K., Kitamura, E., Clayton, L. and Tanaka, T. U. (2011) Kinetochore-dependent microtubule rescue ensures their efficient and sustained interactions in early mitosis. Dev Cell, 21, 920-33. doi; 10.1016/j.devcel.2011.09.006.; PMID: 22075150 View Paper
Maure, J-F.*, Komoto, S.*, Oku, Y., Mino, A., Pasqualato, S., Natsume, K., Clayton, L., Musacchio, A. and Tanaka, T. U. (2011) The Ndc80 loop region facilitates formation of kinetochore attachment to the dynamic microtubule plus end. Curr Biol, 21, 207-13. (* equal contribution) doi; 10.1016/j.cub.2010.12.050.; PMID: 21256019 View Paper
Kitamura, E.*, Tanaka, K.*, Komoto, S.*, Kitamura, Y., Antony, C. and Tanaka, T. U. (2010) Kinetochores generate microtubules with distal plus ends: their roles and limited lifetime in mitosis. Dev Cell, 18, 248-59. (* equal contribution) doi; 10.1016/j.devcel.2009.12.018.; PMID: 20159595 View Paper
Renshaw, M. J., Ward, J. J., Kanemaki, M., Natsume, K., Nedelec, F. J. and Tanaka, T. U. (2010) Condensins promote chromosome recoiling during early anaphase to complete sister chromatid separation. Dev Cell, 19, 232-44. doi; 10.1016/j.devcel.2010.07.013.; PMID: 20708586 View Paper
Tanaka, T. U. (2010) Kinetochore-microtubule interactions: steps towards bi-orientation. Embo J, 29, 4070-82. doi; 10.1038/emboj.2010.294; PMID: 21102558 View Paper
Kitamura, E., Tanaka, K., Kitamura, Y. and Tanaka, T. U. (2007) Kinetochore-microtubule interaction during S phase in Saccharomyces cerevisiae. Genes Dev, 21, 3319-30.
doi; 10.1101/gad.449407; PMID: 18079178 View Paper
Maure, J-F., Kitamura, E. and Tanaka, T. U. (2007) Mps1 kinase promotes sister kinetochore bi-orientation by a tension-dependent mechanism. Curr Biol, 17, 2175-82.
doi; 10.1016/j.cub.2007.11.032; PMID: 18060784; View Paper
Tanaka, K., Kitamura, E., Kitamura, Y. and Tanaka, T. U. (2007) Molecular mechanisms of microtubule-dependent kinetochore transport towards spindle poles. J Cell Biol, 178, 269-81.
doi; 10.1083/jcb.200702141; PMID: 17620411 View Paper
Kitamura, E., Blow J. J. and Tanaka, T. U. (2006) Live-cell imaging reveals replication of individual replicons in eukaryotic replication factories. Cell, 125, 1297-308.
doi; 10.1016/j.cell.2006.04.041; PMID: 16814716 View Paper
Tanaka, K., Mukae, N., Dewar, H., van Breugel, M., James, E. K., Prescott, A. R., Antony, C. and Tanaka T. U. (2005) Molecular mechanisms of kinetochore capture by spindle microtubules. Nature 434, 987-94.
doi; 10.1038/nature03483; PMID: 15846338 View Paper
Dewar, H., Tanaka, K., Nasmyth, K. and Tanaka, T. U. (2004) Tension between two kinetochores suffices for their bi-orientation on the mitotic spindle. Nature 428, 93-97. PMID: 14961024 View Paper
Impact
Errors in chromosome duplication or segregation generate cells with missing or excessive chromosomes (aneuploidy). Aneuploidy could cause various human diseases such as cancers and congenital disorders. It is therefore crucial to understand the molecular mechanisms ensuring proper chromosome duplication and segregation.