University of Dundee

Dr David Murray

Understand the basic molecular mechanics in the formation of subcellular structures
Wellcome Trust and Royal Society Sir Henry Dale Fellow
School of Life Sciences, University of Dundee, Dundee
Full Telephone: 
+44 (0) 1382 381731, int ext 81731


Fundamentally different types of cells organize to form tissues. In each type of cell composing a tissue, specialized structures and organizations help to define their function. Our focus is to determine how cells develop the distinct structures that enable their specialization.

Processes such as cell polarization, migration, division, and ciliogenesis require the cell to remodel its cellular structures and are in part orchestrated by the polarity machinery. For example, reorganization of subcellular structures in epithelia is a critical aspect in normal development. In pathological conditions such as cancer, a remodeling of structures from polarity to migratory is necessary for metastasis, which leads inevitably to poor health prognoses. Other human genetic diseases such as ciliopathies are the direct result of malformation in the cilia subcellular structure. The properties of these processes are directly linked to polarization of the cell. Despite their importance, we cannot at the moment link molecular machineries to the cellular outcomes observed, which is critical to understanding their role human health and disease.

Remarkably, a common logistical machinery organizes the support for subcellular structures through delivery of their building blocks. Yet despite identification of the membranes, proteins, and pathways that make up this machinery, a basic understanding of their structural and molecular mechanics is lacking. Moreover, additional participants may be missing.

We harness membrane biophysical methods and state-of-the-art protein biochemistry, combined in synergy with experimental cell biology. This interdisciplinary approach is a powerful way to determine molecular function, and enables the research questions to lead our investigations.

Human health is critically dependent on the proper formation and maintenance of subcellular structures. Our long-term aim is to bridge scales from the molecular machinery involved to the consequences at a tissue level. We lead our investigations in the context of cellular signaling that is critical to human health, such as that of cancer and transitional states of tissue development.


Sala, K., Corbetta, A., Minici, C., Tonoli, D., Murray, D.H., Cammarota, E., Ribolla, L., Ramella, M., Fesce, R., Mazza, D., Degano, M., de Curtis, I (2019) The ERC1 scaffold protein implicated in cell motility drives the assembly of a liquid phase.  doi/10.1038/s41598-019-49630-y PMCID 6753080 PMID 31537859  Read Article

Murray, D.H.*, Jahnel, M.*, Lauer, J., Avellaneda, M.J., Brouilly, N., Cezanne, A., Morales-Navarrete, H., Perini, E., Ferguson, C., Lupas, A.N., Kalaidzidis, Y., Parton,R.G., Grill, S., and M. Zerial. (2016) An endosomal tether undergoes an entropic collapse to bring vesicles together. Nature 2016 537, 107-111 *, equal contribution. doi/10.1038/nature19326 PMCID 5142606 PMID 27556945  Read Article

Jahnel, M., Murray, D.H., Zeriall, M., Grill S.W (2016) Coiled-coils as molecular motors: entropic polymer engines. Molecular Biology of the Cell (27).  Read Article

Jahne, M., Murray, D.H., Zeriall, M., Grill S.W (2015) An entropic collapse force mediates vesicle tethering in early endosomes. Molecular Biology of the Cell (26). 

Murray, D.H., and Tamm, L.K. (2011) Molecular Mechanism for Phosphatidylinositol-4,5-bisphosphate-Syntaxin Interaction. Biochemistry 2011 50(42), 9014-9022.  doi/10.1021/bi201307u  Read Article

Murray, D.H., and Tamm, L.K (2010) Syntaxin Clustering in Membranes.  Biophysical Journal (3) 616a.  

Murray, D.H., and L.K. Tamm. (2009) Clustering of Syntaxin-1A in Model Membranes is Modulated by Phosphatidylinositol-4,5-bisphosphate and Cholesterol. Biochemistry 2009 48(21), 4617-4625.  doi/10.1021/bi9003217 PMCID 2724070 PMID 19364135  Read Article

Murray, D.H., Tamm, L.K., and V. Kiessling. (2009) Supported Double Membranes, J Struct. Biol. 2009 168 (1), 183-189. doi/10.1016/j.jsb.2009.02.008 PMID 19236921 PMCID 2769931  Read Article

Kim, M., Xu, Q., Murray, D.H., and D.S. Cafiso. (2008) Solutes Alter the Conformation of the Ligand Binding Loops in Outer Membrane Trans-porters. Biochemistry 2008 47 (2), 670-679.  doi/10.1021/bi7016415 PMID 18092811  Read Article

Kiessling, V., Domanska, M.K., Murray, D.H., Wan, C., and Tamm, L.K (2007) Supported Lipid Bilayers: Development and Applications. Volume 4, pp 411-422 in Chemical Biology. Wiley Encyclopedia of Chemical Biology. 2009. John Wiley & Sons, Hoboken. doi/10.1002/9780470048672.wecb663  Read Article