




overexpressed E2F1 in cells that had been depleted of Cezanne. The
overexpression of E2F1 was sufficient to restore the levels of E2F1-
dependent cyclin E expression (supplementary material Fig. S1C).
Under these conditions, both the mRNA and protein levels of
HIF2α could be rescued (Fig. 3A,B). Furthermore, the induction of
the HIF targets PHD3 and BNIP3 was also restored (Fig. 3A). To
further validate these results, we repeated our ChIP analysis for the
HIF2α promoter in the presence or absence of Cezanne (Fig. 3C).
This analysis revealed that in the absence of Cezanne there was a
reduction in the presence of E2F1 at both of the binding sites that we
had previously identified on the HIF2α promoter. In addition, we

analysed the activity of a luciferase construct containing a portion of
the HIF2α promoter, which included the −1218-bp site, in the
presence or absence of E2F1 (Fig. 3D). This revealed that depletion
of E2F1 reduced promoter activity significantly and to levels very
similar to those obtained when we specifically analysed the E2F1
sites (Fig. 2F).

Cezanne regulates E2F1 protein levels
The decrease in E2F1 protein levels in cells that had been depleted
of Cezanne was also observable in 786-O cells (Fig. 4A). However,
both in HeLa and in 786-O cells, there was no reduction in the

Fig. 1. Cezanne regulates HIF2α
protein levels and activity in a PHD-
and vHL-independent manner. (A)
HeLa and 786-O cells were transfected
with either a non-targeting control (ctrl)
or a Cezanne-targeting siRNA (siCez).
At 24 h after transfection, HeLa cells
were exposed to 1% O2, and whole cell
lysates of both HeLa and 786-O cells
were prepared after further 24 h
incubation. Protein levels of HIF2α and
Cezanne were assessed by western
blotting. The band intensities were
measured, and the values normalised
to those of the control siRNA (P-values
are significant according to the
Student’s t-test; ***P<0.001).
(B) 786-O cells were co-transfected
with a HRE-luciferase reporter plasmid
and each of the siRNAs for 48 h.
Results are mean±s.d. for at least three
independent experiments expressed as
fold activation or repression normalised
to those of the control siRNA (P-values
are significant according to the
Student’s t-test; *P<0.05, **P<0.01).
(C) 786-O cells under basal conditions
and HeLa cells, either under basal
conditions or after exposure for 24 h to
1% O2, were transfected with control or
Cezanne siRNAs, and whole cell
lysates were prepared 48-h post-
transfection and analysed by western
blotting with the antibodies depicted.
(D) HeLa cells were transfected with
increasing amounts of a wild-type
GFP–Cezanne plasmid, keeping the
total amount of DNA in each
transfection constant, and harvested for
western blot analysis after 48 h. The
arrow indicates HIF2α protein. (E) HIF
proteasomal degradation pathways
were inhibited in HeLa cells transfected
with control or Cezanne siRNAs and
exposed to 1% O2 for 24 h to stabilise
HIF2α levels. Cells were treated with
20 µM MG132 for 3 h (left panel) or
10 µM MG132 for 7 h (right panel),
1 mMDMOG for 90 min or 200 µMDFX
for 24 h.
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mRNA levels of E2F1 (Fig. 4B), indicating that Cezanne interferes
directly with E2F1 protein levels. This reduction of E2F1 protein
had direct consequences on the expression of the E2F1-dependent
target cyclin E, with that of cyclin D1 being slightly increased and
that of cyclin A remaining unchanged (Fig. 4C). This indicates that

Cezanne depletion has important implications for E2F1-dependent
functions in the cell. In addition, we also determined that
overexpression of Cezanne induced an increase in E2F1 protein
levels, whereas expression of a catalytically inactive mutant
(Bremm et al., 2014) did not (Fig. 4D).

Fig. 2. See next page for legend.
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E2F1 has been previously shown to be modified through K11-
linked chains and to be targeted for proteasomal degradation
through the E3 ligase anaphase-promoting complex/cyclosome
(APC/C) with the activator protein Cdh1 (APC/CCdh1)
(Budhavarapu et al., 2012). The amount of ubiquitylated E2F1 is
small, making it difficult to detect in our experiments
(supplementary material Fig. S2C). As such, we could not detect
the effects of Cezanne on the ubiquitylated form of E2F1; however,
we still attempted ubiquitin chain restriction analysis (UbiCRest)
(Hospenthal et al., 2015). This techniques allows the analysis of the
effects of the deubiquitylase activity of Cezanne on E2F1 in vitro.
Although, again, we could not detect the ubiquitylated form of
E2F1, treatment of the samples with recombinant Cezanne resulted
in increased levels of E2F1 (Fig. 4E). Therefore, our data point to
E2F1 as a newly identified substrate for Cezanne. In support of this
hypothesis, we observed that E2F1 co-immunoprecipitated with
Cezanne, when E2F1 and Cezanne were overexpressed in HEK293
cells (Fig. 4F). Endogenous E2F1 could also be detected to interact
with overexpressed Cezanne in cells (Fig. 4G). However, E2F1
levels following depletion of Cezanne could not be rescued by
proteasomal inhibition (supplementary material Fig. S2D–F),
indicating that the degradation pathway that is elicited through
Cezanne depletion is distinct from that mediated by APC/CCdh1.

Cezannedepletion results in defectivecell cycle progression
Although E2F1 is required for cell cycle progression and the
presence of K11-linked chains has been associated with progression
through S-phase and mitosis (Matsumoto et al., 2010), the role of
Cezanne in regulating the cell cycle is still unclear. We thus
performed cell synchronisation–release experiments in HeLa cells
using double thymidine block to arrest the cells in the G1 phase and
flow cytometry to analyse the cell cycle profile. Although, the
synchronisation was successful in both control and Cezanne-
depleted cells, progression into S-phase was defective in the
absence of Cezanne. When compared with siRNA control cells,
4–6 h post-release, Cezanne-depleted cells were defective in their
progression into S-phase and a higher proportion of these cells

remained in the G1 phase (Fig. 5A). A similar impairment was also
observed in the proportion of cells in G2/M phase. These results are
consistent with a defect in entry into S-phase when levels of
Cezanne are reduced. Depletion of HIF2α did not change cell cycle
progression significantly (supplementary material Fig. S3A), and
co-deletion of Cezanne and HIF2α only produced a small change in
the timing of delay observed in cell cycle progression (Fig. 5A).

Interestingly, and in agreement with our previous finding under
hypoxia (Bremm et al., 2014), Cezanne-depleted cells have higher
levels of cell death and increased markers of apoptosis under
normoxia (Fig. 5B), possibly indicative of defects in S-phase entry.

Our analysis revealed that HIF2α is an E2F1 target, suggesting
that HIF2α expression can be regulated through the cell cycle and in
response to mitogenic signals. As such, we tested whether HIF2α
mRNA could be induced by growth factors, known stimuli for cell
cycle progression. HeLa cells were starved for 24 h in medium
containing 0.5% fetal bovine serum (FBS) and then harvested for
mRNA analysis at several time points after replenishing the cells
with full serum. Interestingly, HIF2α mRNA levels were strongly
induced after 4 h of medium replacement, indicating a role for
growth factors in HIF2α regulation (Fig. 5C). Cyclin D1was used as
a control for growth factor stimulation, and its activation profile was
very similar to that of HIF2α. These data support the hypothesis that
Cezanne can regulate HIF2α expression in an E2F1-dependent
manner and suggest that HIF2α is responsive to cell cycle inducers,
such as mitogenic signals.

HIF2α has been shown to cooperate with the cell cycle regulator
and transcription factor Myc (Gordan et al., 2007b). By contrast,
E2F1 has been shown to be required for Myc-mediated proliferation
in a model of lymphoma in mice (Baudino et al., 2003). To
determine whether HIF2α mRNA levels change in a model of Myc-
induced lymphoma, such as the Eµ-Myc transgenic mouse, we
analysed HIF2αmRNA levels in wild-type andMyc-overexpressing
pre-B and B-cells (Fig. 5D). Our analysis revealed that Myc
overexpression induced very high levels of the E2F1 target cyclin E,
further indicating activation of the E2F family of transcription factors
in this model (supplementary material Fig. S3B). Interestingly,
oncogenic Myc signalling in this model resulted in an induction of
HIF2α mRNA in both pre-B and B cells that had been isolated from
Eµ-Myc mice compared with those from wild-type mice (Fig. 5D).
These results further support our model that engagement of the E2F
pathway leads to expression of the HIF2α gene.

DISCUSSION
The occurrence of hypoxia in many tumours is associated with
increased resistance to chemo- and radiotherapy, as well as with a
poor prognosis (Semenza, 2012). In addition, the deregulated
expression of HIF transcription factors has been reported in several
tumour types and thus far no effective therapies are known to target
HIF-dependent effects (Keith et al., 2012). Given the range of
signalling and metabolic pathways that are regulated by HIF and that
contribute to tumour progression, it is highly relevant to have a more
detailed understanding of how HIF expression and turnover are
regulated. Furthermore, considering the specificity and often
tumour-promoting effects of HIF2α, it is necessary to have a
better understanding of how this subunit is regulated when
designing new drugs to target HIF activity.

Here we describe the regulation of HIF2α protein levels and
activity by a deubiquitylase, Cezanne, and show that Cezanne
regulates HIF2α gene expression bymodulating the protein levels of
E2F1, an important transcription factor associated with cell cycle
progression (Stevens and La Thangue, 2003).

Fig. 2. Cezanne and E2F1modulate HIF2α expression. (A) HeLa and 786-O
cells were transfected with control (ctrl) or Cezanne-targeting siRNAs (siCez),
and whole cell lysates were prepared 48 h post-transfection, and total RNAwas
extracted. RT-qPCR was performed in order to analyse the mRNA levels of
HIF2α and Cezanne using actin as a normalising gene (P-values are significant
according to the Student’s t-test; ***P<0.001). The fold-changes relative to the
control are shown above the bars. (B) Schematic diagram depicting the results
of the bioinformatic analysis of potential transcription factor binding sites
(indicated) in the HIF2α gene promoter region. Base pairs locations are shown
relative to the transcription start site (TSS). (C) 786-O cells under basal
conditions and HeLa cells exposed for 24 h to 1% O2 were transfected with
control or Cezanne-targeting siRNAs, and whole cell lysates were prepared
48 h post-transfection and analysed by western blotting with the antibodies
indicated. (D) HeLa cells were transfected with control or E2F1-targeting
siRNAs, and 48 h post-transfection, total RNA and protein extracts were
prepared. RT-qPCR analysis of HIF2α, HIF1α and E2F1mRNAwas performed
using actin as a normalising gene (P-values are significant according to the
Student’s t-test; ***P<0.001). Protein levels of HIF2α, HIF1α, HIF1β and E2F1
under the same conditions were also analysed by western blotting. The blot on
the right is representative of this analysis. (E) ChIP analyses were performed in
untreated HeLa cells using an antibody against E2F1 and a control IgG
antibody. HIF2α promoter regions were amplified using specific primers, and
the levels of E2F1 recruitment were analysed by using qPCR (P-values are
significant according to the Student’s t-test; *P<0.05). (F) HEK293 cells were
transfected with 1 µg of each of the indicated luciferase constructs for 48 h
before lysis and luciferase activity analysis (P-values are significant according
to the Student’s t-test; *P<0.05, **P<0.01, ***P<0.001). wt, wild-type.
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So far, there is only one report on the regulation of the HIF2α
promoter. Wada and collaborators report that HIF2α expression is
modulated by SP1 and SP3 during adipogenesis (Wada et al., 2006) in
an adipocyte cell model. We show here that E2F1 is a transcription
factor that is required for the expression of HIF2α in a diverse range of
cell lines, such as HeLa and 786-O cells, indicating that E2F1 is a
general regulator of HIF2α expression. This hypothesis is supported
by the observation that known activators of E2F1 activity, such as
growth factors, are also capable of inducing expression of HIF2α. Our
analysis revealed that HIF2α mRNA is responsive to oncogenic
cellular (c)-Myc activation in a model of lymphoma. Interestingly,

when analysing publicly available datasets of human cancers, HIF2α
mRNA levels are substantially increased in lymphoma (Oncomine). In
these analyses, four out of eight datasets demonstrated high levels of
HIF2αmRNAwhen compared with the levels in normal, non-tumour
cells (Oncomine). Given that c-Myc and E2F1 are potent cell cycle
regulators, our observations additionally imply an as yet unexplored
cell-cycle-dependent regulation of HIF2α gene expression.

The observation that Cezanne co-immunoprecipitates with E2F1
and that Cezanne depletion decreases the levels of E2F1, whereas a
wild-type but not a catalytically inactive overexpressed Cezanne
construct increased E2F1 protein, suggests that E2F1 is a newly

Fig. 3. Overexpression of E2F1
rescues HIF2α expression and
activity in Cezanne-depleted cells.
(A) HeLa cells were co-transfected
with 30 nM of either control (ctrl) or
Cezanne-targeting siRNA (siCez)
plus 1 µg of either empty vector (Ev)
or E2F1 expression plasmid. At 24 h
after transfection, cells were exposed
to 1% O2 and incubated for a further
24 h. Whole cell lysates were
analysed by western blotting with the
antibodies indicated. (B) Cells were
treated as explained in A, but total
RNA was extracted, and the mRNA
levels of HIF2α and Cezanne were
determined by using RT-qPCR
(P-values are significant according
to the Student’s t-test; ns, not
significant, *P<0.05, ***P<0.001).
The fold-changes relative to the
control are shown above the bars.
(C) HeLa cells were transfected with
control or Cezanne-targeting siRNAs
before fixation and lysis. ChIP
analysis was performed using an
antibody against E2F1 and control
IgG. HIF2α promoter regions were
amplified using specific primers, and
the levels of E2F1 recruitment were
analysed by using qPCR (P-values
are significant according to the
Student’s t-test; *P<0.05, **P<0.01).
(D) HeLa-HIF2α promoter luciferase
cells were transfected with 30 nM of
either control or E2F1-targeting
siRNA for 48 h before lysis and
luciferase activity analysis (P-values
are significant according to the
Student’s t-test; **P<0.01).
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identified substrate for Cezanne. This is further supported by the
report that E2F1 is modified through K11-linked ubiquitin chains
(Budhavarapu et al., 2012); in vivo, Cezanne is known to have
preference for K11-linked chains (Bremm et al., 2014). We were

unable to readily detect ubiquitylated E2F1 in untreated cells,
indicating that only a small amount of E2F1 is ubiquitylated at
specific stages of the cell cycle or that this is rapidly degraded.
Because proteasome inhibition did not rescue E2F1 levels following

Fig. 4. Cezanne regulates E2F1 protein stability. (A) HeLa and 786-O cells were transfected with either a non-targeting control (ctrl) or a Cezanne-targeting
siRNA (siCez). At 24 h after transfection, HeLa cells were exposed to 1% O2, and whole cell lysates of both HeLa and 786-O cells were prepared after a further
24-h incubation. Whole cell extracts were analysed by western blotting to assess total levels of E2F1 and Cezanne. The band intensities were measured,
and the values were normalised to those in cells transfected with the control siRNA (P-values are significant according to the Student’s t-test; ***P<0.001). The
fold-changes relative to the control are shown above the bars. (B) HeLa and 786-O cells were treated as in A, but the total RNAwas extracted, and the transcript
levels of E2F1were analysed by usingRT-qPCR. ns, not significant. (C)Whole cell extracts fromHeLa cells that had been treated as described in Awere analysed
by western blotting with the antibodies indicated. (D) HeLa cells were transfected with either a wild-type (wt) or catalytically inactive (C194S) GFP–Cezanne
construct, or with empty vector (Ev), and whole cell lysates were analysed by western blotting for the total E2F1 protein levels 48 h post transfection. (E) HEK293
cells were transfected with 5 µg of a HA–E2F1 construct for 48 h before lysis. Following immunoprecipitation (IP) with HA-beads, samples were treated where
indicated with recombinant Cezanne (Cez). Lysates were analysed by western blotting with the indicated antibodies. (F) HEK293 cells were co-transfected
with 5 µg of wild-type GFP–Cezanne and HA–E2F1 plasmids for 48 h before lysis. GFP–Cezanne was immunoprecipitated with an anti-GFP antibody, and
lysates were analysed by western blotting with the indicated antibodies. (G) HEK293 cells were transfected with 5 µg of plasmid encoding wild-type
GFP–Cezanne and left to express for 48 h. Cells were then lysed in a mild NP-40 lysis buffer, and GFP–Cezanne was immunoprecipitated with an anti-GFP
antibody. Co-immunoprecipitation of endogenous E2F1 was analysed by western blotting (WB) as indicated.
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Cezanne depletion, we could not stabilise the ubiquitylated form to
significant levels either. However, using the UbiCRest analysis of
E2F1, where recombinant Cezanne was added to E2F1 that had
been recovered from cells, we could again detect increased levels of

E2F1, further indicating that E2F1 is a newly identified substrate for
Cezanne.

The role of Cezanne in cell cycle regulation has not been truly
explored as of yet, and an initial report indicates that Cezanne

Fig. 5. Cezanne depletion causes defects in cell cycle progression, and HIF2αmRNA responds tomitogenic and oncogenic signals. (A) HeLa cells were
transfected with control (ctrl), Cezanne-targeting siRNAs (siCez), or siCez and HIF2α-targeting siRNA (siCez+HIF2α) before harvesting for cell cycle analysis,
using the double thymidine block protocol (P-values are significant according to the Student’s t-test; *P<0.05, **P<0.01). (B) Left panel, HeLa cells were treated
and analysed as described in A, and the total percentage of cells across the multiple time points shown in A for control or Cezanne-depleted conditions was
calculated (P-values are significant according to the Student’s t-test; ***P<0.001); right panel, whole cell lysates from HeLa cells transfected with either control or
Cezanne-targeting siRNAs were analysed by western blotting with the antibodies indicated. (C) HeLa cells were grown in reduced-serum medium for 24 h, and
after replenishing with medium containing 10% FBS, harvested for mRNA analysis at various time points. Cyclin D1 was used as a positive control for growth-
factor-dependent gene expression induction. (D) Wild-type B lymphocytes and Eµ-Myc-derived pre-B and B-cell tumours were analysed for HIF2αmRNA levels
by using RT-qPCR. The graph depicts the levels obtained for each mouse, which were analysed and compared to a control wild-type level (P-values are
significant according to the Student’s t-test; *P<0.05).
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depletion is not associated with proliferation defects (Neumann
et al., 2010). However, we observed that Cezanne-depleted cells
cannot progress normally through the cell cycle, which is most
likely owing to the downregulation of E2F1 protein levels and not to
HIF2α. However, given the preference of Cezanne for K11-linked
chains (Bremm et al., 2010, 2014) and the cell cycle distribution of
these chains (Matsumoto et al., 2010; Meyer and Rape, 2014), it is
very likely that additional substrates exist in different stages of the
cell cycle. Other approaches using synchronisation techniques at
different stages of the cell cycle – such as mitosis – could help to
elucidate the effects of Cezanne during the cell cycle.
Although the regulation of HIF2α expression by Cezanne is most

likely to be primarily at the transcription level, we cannot disregard
the possibility of a direct effect on the HIF2α protein. We detected
by using mass spectrometry that Cezanne and HIF2α can exist in a
complex (supplementary material Fig. S4), and so it is possible that
Cezanne regulates HIF2α directly, in a manner similar to that
described for HIF1α (Bremm et al., 2014). However, given the
ability of E2F1 to rescue HIF2α levels in the absence of Cezanne,
this implies that the direct regulation of HIF2α by Cezanne is
minimal, at least in the cells systems we have analysed.
Cezanne has been associated with tumour progression, namely in

breast cancer (Pareja et al., 2012), and it has also been linked to
deregulated NF-κB signalling in the context of inflammation (Enesa
et al., 2008; Hu et al., 2013; Luong et al., 2013). The effect we now
report on E2F1 protein levels indicates a broader impact of this
deubiquitylase in cancer through its impact on cell cycle regulation.
Taken together with the regulation of HIF1α expression that we
have reported previously, Cezanne appears to be an attractive new
drug target in the treatment of cancer.

MATERIALS AND METHODS
Cell lines, treatments and transfections
Human cell lines HeLa and HEK293 were cultured in Dulbecco’s
modified Eagle’s medium (DMEM), and cell line 786-O was cultured in
RPMI Medium 1640 (Lonza) supplemented with 10% (v/v) FBS (Gibco),
L-Glutamine (Gibco), 50 U/ml penicillin and 50 μg/ml streptomycin
(Gibco) at 37°C under 5% CO2. Extracts from murine cells were derived
from cohorts housed at the Cancer Research UK Beatson Institute and
covered by the University of Glasgow ethical review process and project
licence PPL60/4181. Wild-type mice were used as control. All mice were
on a C57Bl/6J background. CD19-positive cells were isolated from the
lymph nodes and pelleted before RNA extraction. HeLa-HIF2α promoter
cells were generated by transfecting HeLa cells with a commercially
purchased HIF2α Renilla luciferase promoter and a puromycin resistance
cassette in the ratio of 1:9. Transfected cells were selected using 2 μg/ml
puromycin (Sigma) 48 h after transfection. Once selection was complete,
cells were maintained in complete DMEM supplemented with 0.5 μg/ml
puromycin.

Hypoxia
Hypoxia at 1% O2 was achieved using an INVIVO2 hypoxia workstation
(Ruskinn, Bridgend, Wales). To avoid reoxygenation cells were lysed inside
the workstation.

Proteasome inhibition
Cells were treated with 10 µM or 20 µMMG132 (Merck-Millipore) for 3 or
7 h as indicated. Two additional proteasomal inhibitors were used in HeLa
cells, and the treatments were with 10 µM MLN9708 (Stratech Scientific)
for 1 h or 2 µM Epoxomicin (Merck-Millipore) for 4 h.

Proline hydroxylase inhibition
Cells were treated with DMOG (1 mM final concentration), or DFX
mesylate (Sigma) was added at a final concentration of 200 µM for 1 h
30 min and 24 h, respectively.

Growth factors
To test the effects of growth factors on HIF2α expression, HeLa cells were
incubated for 24 h in medium containing 0.5% of FBS and then harvested at
the different time points after medium replacement containing 10% FBS.

Plasmids
GFP-Cezanne wild type and the C145S mutant have been described
previously (Bremm et al., 2014), E2F1-ER plasmid was a kind gift from Dr
Victoria Cowling (University of Dundee, Dundee, UK). The HRE-
luciferase construct was a kind gift from Professor Giovanni Melillo
(Astra Zeneca, Gaithersburg, MA). Ha-E2F1 (Addgene 24225) was a gift
from Professor Kristian Helin (Lukas et al., 1996). The HIF2α promoter
construct was obtained from Switchgear genomics. HIF2α E2F1 sites were
cloned using KpnI and MluI restriction enzymes in the pGL3-vector
luciferase construct (Promega) using the following oligonucleotides –wild-
type E2F1 forward 5′-CTGCCCTTTTCCCGCACTCTAGCATCCCC-
GCCAAAACCAAACA-3′, reverse 5′-CGCGTGTTTGGTTTTGGCG-
GGGATGCTAGAGTGCGGGAAAAGGGCAGGTAC-3′; E2F1mut1
(−2447 bp) forward 5′-CTGCCCTCAAAAAGCACTCTAGCATCCCC-
GCCAAAACCAAACA-3′, reverse 5′-CGCGTGTTTGGTTTTGGCGG-
GGATGCTAGAGTGCTTTTTGAGGGCAGGTAC-3′; E2F1mut2 (−1218 bp)
forward 5′-CTGCCCTTTTCCCGCACTCTAGCATCCCTAAAACCCA-
CCAAACA-3′; reverse 5′-CGCGTGTTTGGTGGGTTTTAGGGATGCT-
AGAGTGCGGGAAAAGGGCAGGTAC-3′; E2F1mut1 and E2F1mut2
forward 5′-CTGCCCTCAAAAAGCACTCTAGCATCCCTAAAACCCA-
CCAAACA-3′, reverse 5′-CGCGTGTTTGGTGGGTTTTAGGGATGCT-
AGAGTGCTTTTTGAGGGCAGGTAC-3′.

siRNA transfections
siRNA duplex oligonucleotides were synthesized by MWG Eurofins –
control siRNA (5′-CAGUCGCGUUUGCGACUGG-3′); against Cezanne
(5′-CCGAGUGGCUGAUUCCUAU-3′), against HIF2α (5′-CAGCAUC-
UUUGACAGU-3′) and against E2F1 (5′-CGCUAUGAGACCUCACUG-3′).

Cells (2×105) were seeded in 6-well plates and transfected after 24 h
with 30 nM siRNA duplexes using INTERFERin transfection reagent
(Polyplus). siRNA and DNA co-transfections were performed using 30 nM
siRNA plus 1 µg of plasmid, using jetPRIME (Polyplus), according to the
manufacturer’s instructions.

Immunoprecipitation
For immunoprecipitation experiments, 5 μg of plasmid DNA encoding
wild-type GFP–Cezanne per 10-cm dish was transiently transfected into
HEK293 cells by using calcium phosphate, as described previously
(Webster and Perkins, 1999). For gain-of-function experiments, 1 µg of
each plasmid DNAGFP–Cezanne (wild type or C194S) or E2F1 per 3.5-cm
dish was transiently transfected, using jetPRIME (Polyplus), according to
the manufacturer’s instructions.

Cell cycle analysis
Cell cycle analysis was performed following a cell synchronisation–release
protocol using treatments with thymidine to block cell cycle progression in
the G1-S phase of the cell cycle. Cells were transfected as described above
with either a control or a Cezanne-specific siRNA oligonucleotide. At 24 h
post-transfection, cells were washed three times with PBS and incubated
for 19 h with medium that had been supplemented with a 2 mM final
concentration of thymidine. Next, cells were PBS-washed again and released
for 9 h into normal growth medium. After a second incubation with
thymidine for 15 h, cells were oncemore released and harvested every 2 h, for
a total of 10 h, by using trypsin detachment and ethanol fixation, and cells
were then stored at −20°C. Cell cycle profile analysis was performed in a
Guava® easycyte HT (Millipore) apparatus, using the Guava® Cell Cycle
Reagent (Millipore 4500-0220), according to themanufacturer’s instructions.

Luciferase reporter assay
Cells (2×105) were seeded in six-well plates and transfected with 30 nM
siRNA duplexes using INTERFERin transfection reagent (Polyplus). At
48 h post-transfection, cells were lysed in 400 µl passive lysis buffer
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(Promega). For E2F1 sites, cells were transfected with 1 µg of luciferase
constructs for 48 h before lysis. Luciferase assays were performed according
to the manufacturer’s instructions (Luciferase Assay System, Promega).
Results were normalised for protein concentration with all experiments
being performed a minimum of three times before calculating means and
standard deviations, as shown in figures.

Immunoblot
Cells were lysed in RIPA buffer [50 mM Tris-HCl (pH 8), 150 mM NaCl,
1% (v/v) NP40, 0.5% (v/v) Na-deoxycholate, 0.1% (v/v) SDS] with 1 tablet/
10 ml Complete Mini EDTA-free protease inhibitors (Roche). SDS-PAGE
and immunoblots were performed using standard protocols.

Antibodies against the indicated proteins were used as follows – HIF2α
(PA1-16510, Thermo Scientific), Cezanne (custom antibody, Eurogentec),
β-actin (3700, Cell Signaling), PHD3 (A300-327A, Bethyl Labs), BNIP3
(ab10433, Abcam), Glut-1 (53519, Anaspec), p52 (05-361, Merck
Millipore), E2F1 (3742, Cell Signaling), SP1 (07-645, Upstate-Millipore),
cyclin D1 (DCS6, Cell Signaling), cyclin E (HE12, Cell Signaling), cyclin
A (C-19, Santa Cruz), GFP (2956, Cell Signaling), cleaved PARP (D214)
(9541, Cell Signaling), c-Myc (9E10, Sigma), phosphorylated Chk1 at S345
(2341, Cell Signaling).

Immunoprecipitation
For immunoprecipitation of endogenous E2F1, HEK293 cells were
transiently transfected with GFP–Cezanne and subsequently lysed in
200 μl lysis buffer per 10-cm dish [10 mM Tris-HCl (pH 7.5), 150 mM
NaCl, 1% (v/v) Triton X-100, 20% (v/v) glycerol] with 1 tablet/10 ml of
Complete Mini EDTA-free protease inhibitors (Roche).

Cleared cell lysate was rotated overnight at 4°C with 2 μg of anti-E2F1
antibody and then for an additional 1 h 30 min after adding protein-G–
Sepharose (Generon). Immobilized antigen–antibody complex was then
washed three times with PBS and eluted in 20 µl Laemmli buffer (2× SDS
buffer) buffer.

For mass spectrometry analysis, three 10-cm dishes of HeLa cells, with an
optical confluence of 80–90%, were incubated for 24 h at 1% O2 before
harvesting with a detergent-free lysis buffer (50 mM Tris-HCl pH 8,
150 mM NaCl, 2 mM EDTA, 1 mM DTT). After 15 min incubation on ice,
the lysates were passed through a 25 G syringe five times and cleared by
centrifugation. Immunoprecipitation was performed using an anti-HIF2α
antibody [EPAS-1 (A-5), Santa Cruz].

The mass-spectrometry-based immunoprecipitation experiments were
performed in triplicate. Protein preparations were separated by using an
SDS-PAGE gel, fractionated into eight fractions and an in-gel digestion was
performed. The samples were reduced and alkylated with DTT and
iodoacetamide, and digested using sequencing-grade trypsin (Roche). The
resulting peptides were then cleaned over a C18 column, and submitted for
mass spectrometric analysis.

The samples were run on the Orbitrap Velos (Thermo Fisher) using a 180-
min gradient (10–40% acetonitrile, 80% acetonitrile and 2% Formic acid).
The parent ion scan was 350–1800 Da, at 60,000 resolution. The tandem
mass spectrometry (MS/MS) scan was performed with a minimum signal of
5000, default charge state of >2, on the top 10 ions, with a normalised
collision energy of 35. Dynamic exclusion of 120 s was utilised.

The resulting mass spectrometry raw data was processed using MaxQuant
version 1.3.0.3 (Cox and Mann, 2008), using the Andromeda search engine
against the Uniprot Human database (2012). The variable modifications
were oxidation (M), deamidation (NQ) and acetylation (protein N-terminus),
with a fixed modification of carbamidomethyl (C). The peptide and protein
FDR was set to 0.01. Protein identifications with <2 peptides, identified as
contaminants (as designated by MaxQuant), a PEP value of >0.05 and
reversed sequence hits were excluded from further analysis.

Immunoprecipitation and UbiCRest of HA-tagged E2F1
HEK293 cells (3×106) were seeded in 10-cm culture dishes and transfected
24 h later with 5 µg pCMV-HA-E2F1. Subsequently, cells were lysed in
50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1% (v/v) IGEPAL® CA-630,
0.2% (v/v) SDS, 10 mM NaF, 1 mM PMSF, 5 mM N-ethylmaleimide,
1× Complete EDTA-free protease inhibitors (Roche) and 1 µl/ml

Benzonase® Nuclease (≥250 units/µl). Cleared lysates were incubated with
10 µl of agarose conjugated to an antibody against hemagglutinin (HA)
(Sigma-Aldrich #A2095) per sample for 3 h at 4°C. Beads were washed three
times with wash buffer [50 mM Tris-HCl (pH 7.4), 150 mM NaCl], once
with DUB buffer [50 mMTris-HCl (pH 7.4), 50 mMNaCl, 5 mMDTT] and
equally split in two reaction tubes. Activation of 2 µg GST-Cezanne1-449 was
initiated by incubating in DUB dilution buffer [150 mM NaCl, 25 mM Tris
(pH 7.4), 10 mM DTT] for 10 min at room temperature. GST–Cezanne or
DUB buffer alone (control) was added to immobilised HA–E2F1 and
incubated for 1 h at 37°C. Subsequent SDS-PAGE and immunoblots were
performed using standard protocols.

Analysisof geneexpression levelsby using reverse transcriptase
RT-PCR
RNA was extracted using peqGOLD total RNA kit (Peqlab), according to
the manufacturer’s instructions, and reverse transcribed using QuantiTect
Reverse Transcription Kit (Qiagen). For quantitative (q)PCR, Brilliant II
Sybr green kit (Stratagene-Agilent), including specific MX3005P 96-well
semi-skirted plates, were used to analyse samples on the MX3005P qPCR
platform (Stratagene-Agilent). Actin was used as a normalising agent in all
experiments. The following primers were used for RT-PCR (the prefix ‘m’
denotes ‘mouse’) – actin F 5′-CTGGGAGTGGGTGGAGGC-3′, R 5′-T-
CAACTGGTCTCAAGTCAGTG-3′; HIF2α F 5′-TTTGATGTGGAAAC-
GGATGA-3′, R 5′-GGAACCTGCTCTTGCTGTTC-3′; Cezanne F 5′-
ACAATGTCCGATTGGCCAGT-3′, R 5′-ACAGTGGGATCCACTTCA-
CATTC-3′; cyclin D1 F 5′-AGTCCGTGTGACGTTACTGTTGT-3′, R 5′-
CTCCCGCTCCCATTCTCT-3′; E2F1 F 5′-ATGTTTTCCTGTGCCCTG-
AG-3′, R 5′-ATCTGTGGTGAGGGATGAGG-3′; mActin F 5′-ATGCT-
CCCCGGGCTGATAT-3′, R 5′-CATAGGAGTCCTTCTGACCCATTC-
3′; mHIF2α F 5′-ATCACGGGATTTCTCCTTCC-3′, R 5′-GGTTAAGG-
AACCCAGGTGCT-3′; mCyclin E F 5′-CTGGACTCTTCACACAGAT-
GAC-3′, R 5′-GCCTATCAACAGCAACCTACA-3′.

Chromatin immunoprecipitation
ChIP was performed using an adaptation of Schumm and colleagues’
method (Schumm et al., 2006). Proteins and chromatin were cross-linked
with 1% formaldehyde at room temperature for 10 min. Glycine was added
to a final concentration of 0.125 M for 5 min to quench the reaction. Cells
were harvested into 400 µl of lysis buffer (1% SDS, 10 mM EDTA, 50 mM
Tris-HCl pH 8.1, 1 mM PMSF, 1 μg/ml leupeptin, 1 μg/ml aprotinin) and
left on ice for 10 min. Samples were then sonicated at 4°C eight times for
15 s with a 30-s gap between each sonication at 50% amplitude (Sonics
Vibra-Cell, number VCX130). Supernatants were recovered by using
centrifugation (13,000 g for 10 min at 4°C) before 10% of each sample was
stored as input. Remaining samples were split into 120-µl aliquots before
being diluted tenfold in dilution buffer (1% Triton X-100, 2 mM EDTA,
150 mMNaCl, 20 mM Tris-HCl pH 8.1). Diluted samples were pre-cleared
for 2 h at 4°C by incubating with 2 µg of sheared salmon sperm DNA and
20 µl of protein G-Sepharose (50% slurry).

Immunoprecipitations were performed overnight on the remaining
sample with 2 µg of anti-E2F1 antibody, with the addition of Brij 35
detergent to a final concentration of 0.1%. Immune complexes were
captured by incubating with 40 µl of protein-G–Sepharose (50% slurry) and
2 µg salmon sperm DNA for 1 h at 4°C. The immunoprecipitates were
washed sequentially for 5 min each at 4°C inWash Buffer 1 (0.1% SDS, 1%
Triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH 8.1, 150 mM NaCl),
Wash Buffer 2 (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-
HCl, pH 8.1, 500 mMNaCl) and Wash Buffer 3 (0.25 M LiCl, 1% Nonidet
P-40, 1% deoxycholate, 1 mM EDTA, 10 mM Tris-HCl pH 8.1). Beads
were washed twice with Tris-EDTA buffer and eluted with 120 µl of Elution
Buffer (1% SDS, 0.1 M NaHCO3). Cross-links were reversed by incubating
with 0.2 M NaCl at 65°C overnight and Proteinase K (20 µg each), 40 mM
Tris-HCl pH 6.5 and 10 mM EDTA for 1 h at 45°C was used to remove
protein. DNA was purified using a PCR-product purification kit according
to the manufacturer’s instructions (NBS Biologicals, number NBS363).
A 3-µl aliquot of DNAwas used for qPCRwith the following primers for the
HIF2α promoter (−2447 bp or −1218 bp) – HIF2α promoter (−1218 bp)
F 5′-CCCTCGCTTTCCAACTTCAA-3′, R 5′-CGCCTACTCTTCCTTCCCTC-3′;

3091

RESEARCH ARTICLE Journal of Cell Science (2015) 128, 3082-3093 doi:10.1242/jcs.168864

Jo
u
rn
al

o
f
Ce

ll
Sc
ie
n
ce



HIF2α promoter (−2447 bp) F 5′-TCTTGAGTGACCCCTCCTTG-3′, R
5′-CTCAAGTGATCTGCCCAACT-3′.
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