University of Dundee

Biomedical Engineering

MRC DTP 4 Year PhD Programme: Revealing dynamic and elusive early-mitotic events using state-of-the-art live-cell light sheet imaging

To maintain their genetic integrity, eukaryotic cells must segregate their chromosomes properly to opposite spindle poles during mitosis. This process has important medical relevance because chromosome mis-segregation plays causative roles in human diseases such as cancers and congenital diseases. To prepare for proper chromosome segregation, kinetochores – the spindle attachment sites on chromosomes – must correctly interact with spindle microtubules (MTs) during early mitosis.

MRC DTP 4 Year PhD Programme: Functions & Applications of a Novel Stem Cell Signalling Pathway

The Findlay lab employs cutting-edge technologies to unravel Embryonic Stem (ES) cell signalling networks (Williams et al, Cell Rep 2016, Fernandez-Alonso et al, EMBO Rep 2017; Bustos et al, Cell Rep 2018), culminating in our recent discovery of the ERK5 pathway as an exciting new regulator of ES cell pluripotency. In order to uncover functions of ERK5 in ES cells, this project will deploy global proteomic and phosphoproteomic profiling. Novel ERK5 substrates and transcriptional networks will be characterised using biochemical and ES cell biology approaches.

BBSRC EASTBIO PhD Programme: Novel biopolymer assembly - using a divergent lamina system to understand principles of self-assembling fibres

Self-assembly of larger protein networks is a central feature of replicating systems from viral capsids to the cytoskeleton that gives cells structure and polarity. One important example is the nuclear lamina, a subset of the cytoskeleton responsible for nuclear structural integrity, controlling the demarcation between active and inactive chromatin and the developmental control of gene expression programs.

BBSRC EASTBIO PhD Programme: Revealing dynamic and elusive early-mitotic events using state-of-the-art live-cell light sheet imaging

To maintain their genetic integrity, eukaryotic cells must segregate their chromosomes properly to opposite spindle poles during mitosis. This process has important medical relevance because chromosome mis-segregation plays causative roles in human diseases such as cancers and congenital diseases. To prepare for proper chromosome segregation, kinetochores – the spindle attachment sites on chromosomes – must correctly interact with spindle microtubules (MTs) during early mitosis.