University of Dundee

Professor Nicola Stanley-Wall

Understanding the molecular mechanism of biofilm formation
Professor of Molecular Microbiology and Head of the Division of Molecular Microbiology
School of Life Sciences, University of Dundee, Dundee
Full Telephone: 
+44 (0) 1382 386335, int ext 86335


Our research interests are centred on using molecular biology to understand the signalling processes that control multicellular behaviours exhibited by bacteria. In particular the lab is interested in the genetic components that control biofilm formation by the Gram-positive bacterium Bacillus subtilis.

The ability of unicellular bacteria to co-ordinate responses and to act as a multicellular population is proposed to provide an advantage to the bacterial population as a whole. A mechanism whereby bacteria can function as a multicellular population is to form a biofilm, a community of bacterial cells that is adherent to a surface, interface or to each other and encased in a self-produced polymeric matrix.

Bacteria living in biofilms have increased resistance to various antimicrobial agents and are better adapted to survive periods of environmental stress. Therefore, biofilms have a significant impact in clinical settings, where they are the causative agent of the majority of chronic infections, and in industrial settings where they cause significant damage due to corrosion and bio fouling. On the other hand microbial biofilms can also result in beneficial processes such as bio-remediation and bio-control that cannot be accomplished by bacteria that are dispersed in the environment. Knowledge of the molecular mechanism of biofilm formation should allow the development of novel treatment strategies for controlling chronic biofilm infections and the development of ecologically friendly pesticides.

For information about the people and the types of questions that we are currently addressing please see my lab's personal website.


Level 2:
BS22022 – course contributor and tutorial leader
- Koch’s postulates- historical and current views.
Level 3:
BS32004 – “Molecular Microbiology” – module lead 
- Microbial diversity
- Cell division
- Biofilm formation
- Controlling Sigma Factors
BS32011 – “Microbial Cell Biology” – module contact
- Practical unit using transposon mutagenesis of Bacillus subtilis to learn about genetics, bacterial physiology, and molecular biology.
Level 4:
Honours Year – annual project supervisor from 2005-current
Level 5:
MSci – project supervisor from 2017-current


Arnaouteli, S., MacPhee, C. E. and Stanley-Wall, N. R. (2016) Just in case it rains: building a hydrophobic biofilm the Bacillus subtilis way. Current opinion in microbiology. 34, 7-12
Morris, R. J., Bromley, K. M., Stanley-Wall, N. and MacPhee, C. E. (2016) A phenomenological description of BslA assemblies across multiple length scales. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences. 374
Robertson-Albertyn, S., Hardee, E. and Stanley-Wall, N. R. (2016) Microbe Motels: An Interactive Method to Introduce the Human Microbiome. Journal of microbiology & biology education. 17, 282-283
Schor, M., Reid, J. L., MacPhee, C. E. and Stanley-Wall, N. R. (2016) The Diverse Structures and Functions of Surfactant Proteins. Trends in biochemical sciences. 41, 610-620
Warne, B., Harkins, C. P., Harris, S. R., Vatsiou, A., Stanley-Wall, N., Parkhill, J., Peacock, S. J., Palmer, T. and Holden, M. T. (2016) The Ess/Type VII secretion system of Staphylococcus aureus shows unexpected genetic diversity. BMC genomics. 17, 222
Brandani, G. B., Schor, M., Morris, R., Stanley-Wall, N., MacPhee, C. E., Marenduzzo, D. and Zachariae, U. (2015) The Bacterial Hydrophobin BslA is a Switchable Ellipsoidal Janus Nanocolloid. Langmuir. 31, 11558-11563
Bromley, K. M., Morris, R. J., Hobley, L., Brandani, G., Gillespie, R. M. C., McCluskey, M., Zachariae, U., Marenduzzo, D., Stanley-Wall, N. R. and MacPhee, C. E. (2015) Interfacial self-assembly of a bacterial hydrophobin. P Natl Acad Sci USA. 112, 5419-5424
Cairns, L. S., Martyn, J. E., Bromley, K. and Stanley-Wall, N. R. (2015) An alternate route to phosphorylating DegU of Bacillus subtilis using acetyl phosphate. BMC Microbiol. 15, 78
Gerc, A. J., Diepold, A., Trunk, K., Porter, M., Rickman, C., Armitage, J. P., Stanley-Wall, N. R. and Coulthurst, S. J. (2015) Visualization of the Serratia Type VI Secretion System Reveals Unprovoked Attacks and Dynamic Assembly. Cell Rep. 12, 2131-2142
Hobley, L., Harkins, C., MacPhee, C. E. and Stanley-Wall, N. R. (2015) Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol Rev. 39, 649-669
Stanley-Wall, N. R., Coulthurst, S. J. and Holland, I. B. (2015) A Snapshot of the Extraordinary World of Social Microbiology. J Mol Biol. 427, 3625-3627
Stanley-Wall, N. R. and MacPhee, C. E. (2015) Connecting the dots between bacterial biofilms and ice cream. Physical Biology. 12
Cairns, L. S., Hobley, L. and Stanley-Wall, N. R. (2014) Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms. Mol Microbiol. 93, 587-598
Cairns, L. S., Marlow, V. L., Kiley, T. B., Birchall, C., Ostrowski, A., Aldridge, P. D. and Stanley-Wall, N. R. (2014) FlgN is required for flagellum-based motility by Bacillus subtilis. J Bacteriol. 196, 2216-2226
Gerc, A. J., Stanley-Wall, N. R. and Coulthurst, S. J. (2014) Role of the phosphopantetheinyltransferase enzyme, PswP, in the biosynthesis of antimicrobial secondary metabolites by Serratia marcescens Db10. Microbiology. 160, 1609-1617
Gerwig, J., Kiley, T. B., Gunka, K., Stanley-Wall, N. and Stulke, J. (2014) The protein tyrosine kinases EpsB and PtkA differentially affect biofilm formation in Bacillus subtilis. Microbiology. 160, 682-691
Gillespie, R. M. and Stanley-Wall, N. R. (2014) Enzymes in action: an interactive activity designed to highlight positive attributes of extracellular enzymes synthesized by microbes. J Microbiol Biol Educ. 15, 310-312
Hamilton, J. J., Marlow, V. L., Owen, R. A., Costa Mde, A., Guo, M., Buchanan, G., Chandra, G., Trost, M., Coulthurst, S. J., Palmer, T., Stanley-Wall, N. R. and Sargent, F. (2014) A holin and an endopeptidase are essential for chitinolytic protein secretion in Serratia marcescens. J Cell Biol. 207, 615-626
Hobley, L., Kim, S. H., Maezato, Y., Wyllie, S., Fairlamb, A. H., Stanley-Wall, N. R. and Michael, A. J. (2014) Norspermidine is not a self-produced trigger for biofilm disassembly. Cell. 156, 844-854
Marlow, V. L., Cianfanelli, F. R., Porter, M., Cairns, L. S., Dale, J. K. and Stanley-Wall, N. R. (2014) The prevalence and origin of exoprotease-producing cells in the Bacillus subtilis biofilm. Microbiology. 160, 56-66
Marlow, V. L., Porter, M., Hobley, L., Kiley, T. B., Swedlow, J. R., Davidson, F. A. and Stanley-Wall, N. R. (2014) Phosphorylated DegU manipulates cell fate differentiation in the Bacillus subtilis biofilm. J Bacteriol. 196, 16-27
Cairns, L. S., Marlow, V. L., Bissett, E., Ostrowski, A. and Stanley-Wall, N. R. (2013) A mechanical signal transmitted by the flagellum controls signalling in Bacillus subtilis. Mol Microbiol. 90, 6-21
Hobley, L., Ostrowski, A., Rao, F. V., Bromley, K. M., Porter, M., Prescott, A. R., MacPhee, C. E., van Aalten, D. M. and Stanley-Wall, N. R. (2013) BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm. Proc Natl Acad Sci U S A. 110, 13600-13605
Marlow, V. L., Maclean, T., Brown, H., Kiley, T. B. and Stanley-Wall, N. R. (2013) Blast a biofilm: a hands-on activity for school children and members of the public. J Microbiol Biol Educ. 14, 252-254
Davidson, F. A., Seon-Yi, C. and Stanley-Wall, N. R. (2012) Selective heterogeneity in exoprotease production by Bacillus subtilis. Plos One. 7, e38574
Gerc, A. J., Song, L., Challis, G. L., Stanley-Wall, N. R. and Coulthurst, S. J. (2012) The insect pathogen Serratia marcescens Db10 uses a hybrid non-ribosomal peptide synthetase-polyketide synthase to produce the antibiotic althiomycin. Plos One. 7, e44673
Terra, R., Stanley-Wall, N. R., Cao, G. and Lazazzera, B. A. (2012) Identification of Bacillus subtilis SipW as a bifunctional signal peptidase that controls surface-adhered biofilm formation. J Bacteriol. 194, 2781-2790